

Transforming Maize-legume Value Chains –

A Business Case for Climate-Smart Agriculture in Southern Africa

By Christian Thierfelder, Geofrey Siulemba, Moses Mwale and colleagues from Malawi and Zimbabwe

Projected change in Agriculture Productivity, 2080

Traditional African smallholder farming systems

- Based on tillage (manual/animal traction)
- Residue removal
- Monocropping of maize
- Limited **fertilizer** use
- Based on traditional varieties
- Affected by variable climate
- Inherently poor soil fertility

The Challenges

Business as usual will not work

Increase in Temperatures by 2.1–2.7 °C UNFCC projections for Africa [ref Girvetz et al. 2018]

2 droughts every 5 years Reduction in maize yield by 10 to 30% by 2030

Out scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe

Adaptation to Climate Change for Smallholder Rural Areas (ACCRA) Project funded by GIZ/CCARDESA

- Undertake a climate change
 Vulnerability Assessment
- Piloting CSA technologies on-farm
- Prioritization of CSA technologies
- Feasibility study
- Development of out-scaling
 Proposals for CSA scaling

Vulnerability assessment - process

Piloting in CSA in on-farm communities of Southern Africa

Cluster villages and "Mother and Baby" trials

Mother trials

Prioritization of CSA technologies

Process:

- Local meetings with key stakeholder in target communities
- Regional meeting in Lusaka using the GIZ tool
- Ranking based on a ranking matrix

Southern MAL Adaptation option	Effective ness	Cost	Feasibility for Farmers	Political/ social acceptance	Relative speed to benefit	No regret potential	Alignement to donor support	Alignement with Policy	Sum of score	Rank	weighted rank	Mitigation co-benefit	Gender Sensitivity
InterCropping	5	3	5	5	4	4	5	5	36	4.50	4.35	+	+
Crop Diversification	5	3	4	5	4	5	5	5	36	4.50	4.25	0	+
DT Vars	5	2	3	4	5	4	5	5	33	4.13	3.85	0	0
CA	4	3	4	4	2	4	5	5	31	3.88	3.6	0	+
Organic Manure	4	3	3	4	4	4	2	5	29	3.63	3.55	-	0
Supplementary Irrigation	5	1	2	4	5	5	5	5	32	4.00	3.55	0	0
Cap Building	4	1	5	4	1	3	5	5	28	3.50	3.15	0	+
IPM	3	1	2	3	4	4	3	4	24	3.00	2.7	0	0
Agro Met Info Sharing	2	1	4	4	2	2	4	5	24	3.00	2.55	0	0
Small livestock production	4	1	1	4	3	2	4	4	23	2.88	2.45	-	+
Rainwater Harvest	4	1	2	2	3	3	1	3	19	2.38	2.45	0	-
Policy Implement	2	1	2	3	1	2	5	5	21	2.63	2	0	0

A Feasibility Study on Climate-Smart Agriculture Systems

For an investment proposal we needed data on:

- > Agronomic performance
- > Economic viability
- > Environmental impact
- Social impact (gender)

Conservation agriculture: A climatesmart agriculture system:

- Minimal soil movement
- Surface crop residue retention
- Diversification through crop rotations, intercropping and green manures

Maize-soybean rotation

Groundnuts under CA

Maize-Gliricidia intercropping

Cowpeas under CA

Maize-groundnut rotation

Why focus on Conservation Agriculture?

- Combines all positive technologies prioritized above
- CA can help to adapt production to climate variability and change!
- CA is more water-, nutrient-, and energy-use-efficient
- CA improves the productivity of current farming systems
- Availability of long-term data to do the study

Productivity benefits – On-farm pilots in Malawi, 2019

Climate-smart agriculture in action!

Productivity benefits – long-term

Regional yield response to CA in southern Africa from 2005-2016

Manual Sustainable Intensification Practices - Net Benefits (2012-2016), Eastern Zambia

Labour reduction – a key benefit!

Thierfelder et al. 2015b

Environmental benefits – improved Water Infiltration

Environmental benefits – increased Soil Moisture

Environmental benefit – reduced Soil Erosion

Environmental benefit – gradual increase in soil carbon

Farmers practicing CA with TLC in Malawi – initiated with CIMMYT in 2005 but supported by many funders!

Source: Bunderson TLC, 2016

CA Adoption in Zambia and Malawiwith an increasing trend....!

Country	Area under CA (ha)	Area under CA (ha)			
	2013	2018			
Malawi	65,000	210,000			
Zambia	200,000	316,000			

Source: Kassam et al. 2015; 2018

Some pertinent challenges ...

- > Residues: How can we feed both livestock and crops?
- ➤ Weeds and their control a major challenge if no herbicides are used
- > Lack of **fertilizer use** what are the alternatives?
- ➤ Limited crop diversification too much focus on maize
- ➤ Lack of **evidence** and data taking believe in myths

- > Targeting the wrong systems to the wrong farmers
- > Donor driven adoption one-size fits-all approaches
- ➤ Low adoption lack of **understanding** of underlying issues
- > Ignoring farmers rationale and decision making
- The need for new knowledge and co-development of technologies

Scaling is more than the technology

Project results have been summarized in 4 project reports in contemporary design –

This is our Business Case!

Several regional and country proposals have been developed for southern Africa

- Work package 1: Scaling out climate-smart agriculture with smallholders in a community-based approach
- Work Package 2:Incentivising the supply side to invest into climate-smart agriculture
- Work Package 3: Knowledge generation and dissemination
- Work Package 4: Creating an enabling policy environment

Participatory vulnerability assessment: what are the risks, exposure/sensitivity and existing coping mechanisms?

Long-term on-farm and station trials to understand benefits and trade-offs of CSA technologies/practices in variable climate (productivity, income, social, environment)

YES we CAN!

Prioritization: Identification of feasible CSA best-bet options to scale for better adaptation

- Stakeholder meetings (3) to select 2 best-bet CSA options to compare with conventional system in term of productivity, adaptation and mitigation
- potential.

Regional decision-maker workshop in Zambia, 2018 with NARS research and extension directors; and other stakeholders using GIZ Climate proofing tool per agroecological zone

Quantity Soil Carbon?

Pilot study to test adaptability of new CSA system (doubled legume rotation) δ CSA mitigation potential