Research and Development (R&D) Efforts under Legumes

Kennedy K. Muimui, Laurent Pungulani and Manuel Amane
Lead scientists – Legumes
On Behalf of Legumes Commodity Teams
(Malawi, Mozambique and Zambia)
Presentation Outline

• Background
 – RD Gaps Addressed
 – Key Research Areas
 – Objectives

• Focus crops

• Projects implemented

• Key Outputs (Achievements)
 – Technologies Generated
 – Technologies Released
 – Technologies disseminated

• Key Lessons

• Way forward

• Acknowledgements
Background

• The Nitrogen fixing properties of Legumes can improve soil fertility which improves and extends the productivity of farm lands
• Legumes are sources of proteins and dietary fibre
• Good rotations crops with cereals
• Legumes have low fat content, zero cholesterol
• They can be good sources of income
The low yields are attributed to a number of factors, some of which include low use of inputs, use of unimproved varieties, recycling of seed, pests and diseases.

Drought and heat is becoming a problem with SHF and hence need to come up with genotypes/varieties that are tolerant to drought.
Key Research Gaps

- Low productivity
 - Pests and Diseases
 - Low access to improved seeds
 - Poor Production methods

- Climate resilience
 - Droughts
 - Heat

- Nutrition
 - High Iron and Zinc
Key Research Gaps

- Managing aflatoxin problems in Groundnuts
- Reducing post harvest losses in grain legumes
- Improving access to new varieties through development of sustainable seed system
- Germplasm collection and conservation
Key Objectives

- To generate Legume based technologies for increased productivity and production for both small scale and commercial farmers in Malawi, Mozambique and Zambia
- To develop appropriate production packages for the farming community and stakeholders
- To enhance utilization of legumes at household level
Focus Crops

- Groundnuts
- Beans
- Soybeans
- Cowpeas
- Pigeon peas
- Bambara nuts
Projects Implemented

<table>
<thead>
<tr>
<th>S/N</th>
<th>Crop</th>
<th>County</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mw</td>
<td>Mz</td>
</tr>
<tr>
<td>1</td>
<td>Groundnuts</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Beans</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Soybeans</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Cowpeas</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Pigeon pea</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Multi-legumes</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
<td>22</td>
</tr>
</tbody>
</table>
A number of technologies were generated

- Varieties
- Production packages
- Utilization packages
Released Technologies (Varieties)

<table>
<thead>
<tr>
<th>S/N</th>
<th>Crop</th>
<th>County</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mw</td>
<td>Mz</td>
</tr>
<tr>
<td>1</td>
<td>Groundnuts</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Beans</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Soybeans</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Cowpeas</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Pigeon pea</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>S/N</td>
<td>Crop</td>
<td>County</td>
<td>Total</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mw</td>
<td>Mz</td>
</tr>
<tr>
<td>1</td>
<td>Groundnuts</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Beans</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Soybeans</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Cowpeas</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Pigeon pea</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Bambarra</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>
Germplasm Collection and Conservation

<table>
<thead>
<tr>
<th>S/N</th>
<th>Crop</th>
<th>County</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MW</td>
<td>MZ</td>
</tr>
<tr>
<td>1</td>
<td>Groundnuts</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Cowpeas</td>
<td>46</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Pigeon pea</td>
<td>87</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Bambarra</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>157</td>
<td>115</td>
</tr>
</tbody>
</table>
Technologies Disseminated

- Use of Inoculum in Soybeans
- Row Planting in Beans and cowpea
- Lime use in Groundnuts to reduce Aflatoxin contamination
- Side Raised Windrow in Drying Groundnuts
- Dwarf Raised Windrow in Drying Groundnuts
- Raised Ventilated Platform in Drying Groundnuts
Technologies Disseminated

- Double Row ridge planting in Groundnuts
- Recommendations on management of aflatoxin in groundnuts
- 90+ Legume technologies disseminated to SHF
- Formulated cowpea based weaning food
Key Lessons

• Strong involvement of Agricultural extension agencies as partners in implementation was found to be critical to enabled researchers to get feedback

• Hands-on training of farmers increased their interest and knowledge

• Farmers’ trainings were more productive when one topic was handled at a time than several topics
Key Lessons

• Partnerships/networking with CGIAR centres facilitate germplasm acquisition and improved the scientific quality of research.

• A few scientists have had good working experience and as a result they have complemented well in developing technologies within a short space of time.
Key Lessons

• Collaboration among countries and working in multidisciplinary teams is important in achieving the Goals and Objectives of a programme - enhanced learning and diversity in the execution of sub projects hence leading to better results
 – Complementarity
Technology uptake by Private

- Mw: Multi Seeds Company, Mgomera Seeds, Afriseeds, Globle seeds, Pyxus, Rab Processors, Agrocom, ETG, Transglobal,

- Mz: Orwera, Phoenix Seed Company, Dengo Comercial, Klein Karoo Seed Marketing

- Zm: Afriseeds, Good Nature Seeds, Future Seeds, Kamano Seeds, Freshpikit, Standa, Yanza Amansa, Mt Meru Industries, Comaco,
Way Forward

• Continue Dissemination of Technologies developed and make them available to farmers

• Link farmers to markets so as to enhance improved livelihoods among small holder farmers

• Continue work on resilience to heat, drought and low soil fertility in wake of climate change
Way forward

• Continue work on resilience to biotic and abiotic stresses
• Strengthen Pre-basic and Basic seed production so as to address issues of basic seed demand
• Ensure release of technologies under Pre-release/pipeline
Acknowledgements

Small scale Farmers

Research Scientists in all 3 countries
• Zikomokwa mbiri

• Muito obrigado, pela vossa atenção

• Thank you very much for your attention