

2 - 4 April 2025 | Manthabiseng Convention Centre Maseru, Kingdom of Lesotho

Introduction

- Microbial pathogens causing superficial tuber skin blemishes significantly impact potato production
- causing severe economic losses
- Reduction in yield
- Tuber marketable quality
- Some of these blemishes are due to known pathogens, while others are due to unknown causes known as atypical blemishes.

Objectives

• To determine pathogens responsible for various atypical blemishes on potato tubers

• To diagnose the diseases caused by these pathogens

To test whether the isolated microorganisms are able to cause atypical blemishes on progeny tubers so as to fulfill the Koch's postulates.
 APPSA SCIENTIFIC CONFERENCE

Materials and methods

Potato tubers showing atypical disease symptoms

 Collected from three field trials conducted on naturally infested soil at the NUL farm at harvest

• 16 isolates were brought to the laboratory for fungal morphological identification and molecular characterization

Atypical superficial potato tuber blemishes showing ymptoms where isolates were exercised from

Isolate ID	Disease	Symptoms	Isolate ID	Disease	Symptoms
PEH1; PEH2;	Elephant hide	polygonal brown scab	PDR1; PDR2; PDR3; PDR4; PDR5	Dry rot	Sunkenandwrinkledbrowntoblacktissuespots on tubers
PEH3		•	PBD1; PBD2; PBD3	Black dot	Several black dots or black sclerotia and brown to greyish blemishes
BLS1; BLS2; BLS3	scurf	Small crust like bodies with dark or black sclerotia	PLB1; PLB2; PLB3	Late blight	Rusty, copper brown or purplish flesh discoloration
PUN1		Tuber			

Methodology

- Isolates were purified on PDA medium visual and microscopic morphological characterization
- Three replications were made for each isolate pathogen
- Microbial characteristics were assessed for each identified pathogen
 Colony color,

(SC)

- >microconidia and macroconidia shape and size,
- >mycelium growth pattern

Methodology

- DNA extraction for molecular characterization of the fungal isolates was done by rDNA sequencing at Inqaba Biotechnologies in Pretoria, South Africa.
- The ITS region was amplified using ITS1-F (Gardes and Bruns, 1993) and ITS4 (White et al. 1990),
 - The translation elongation factor 1α (tef1α) amplified with primers EF-1 and EF-2 (O' Donnel et al., 1998)
 - Consensus sequences were deposited in GenBank and showed 99.7% similarity to R. solani AG 4HG I GenBank accession

Results

	Fungal pathogen identified	Associated disease	Identification method					
			Morphological	rDNA ITS/ETF				
8	Rhizoctonia solani	Elephant hide	Х					
3	Rhizoctonia solani AG-4	Black scurf	X	Х				
	Phytophora infestans	Late blight	X					
	Fusarium oxysporum	Dry rot	Х	Х				
	Fusarium longifundum	Dry rot	X	Х				
	Collectotrichum coccodes	Black dot	Х					
	2 - 4 April 2025 Manthabiseng Convention Centre							

Pathogenicity tests

 Four representative fungal isolates of each species were used in the pathogenicity tests

 Isolates were proved pathogenic to potatoes as progeny tubers showed diseases symptoms except for the control plants

- The cultivar effect should be taken into account in pathogenicity testing as it affects virulence of pathogens
- There were cultivar differences in susceptibility

2 - 4 April 2025 | Manthabiseng Convention Centre

Conclusions

- The study provided an insight into the atypical tuber blemishes affecting the potato industry in Lesotho
- Emphasizes the significance of accurate diseases diagnosis and pathogen identification for timely and proper potato diseases management.
- The role played by seed/soil-borne diseases transmission
- The results will enable farmers and extension officers to formulate control strategies against these plant diseases.

- The role played by bacteria, viruses and nematodes in addition to environmental influences in causing atypical tuber blemishes still needs to be investigated.
- Growers must be aware of this potential threat and begin to change their management practices
- Implementation of an integrated disease management approach involving regular monitoring of potato fields for early detection of pathogen symptoms, and use of resistant potato cultivars

Acknowledgements

CARDESA (SC)

A

GOVERNO DE

THE WORLD BANK

IDA I THE WORLD BANK GROUP

- APPSA
- CCARDESS
- NUL

