

2 - 4 April 2025 | Manthabiseng Convention Centre Maseru, Kingdom of Lesotho Harnessing genetic innovations to promote resilient African food systems

Casper Nyaradzai Kamutando

Department of Plant Production Sciences and Technologies, University of Zimbabwe

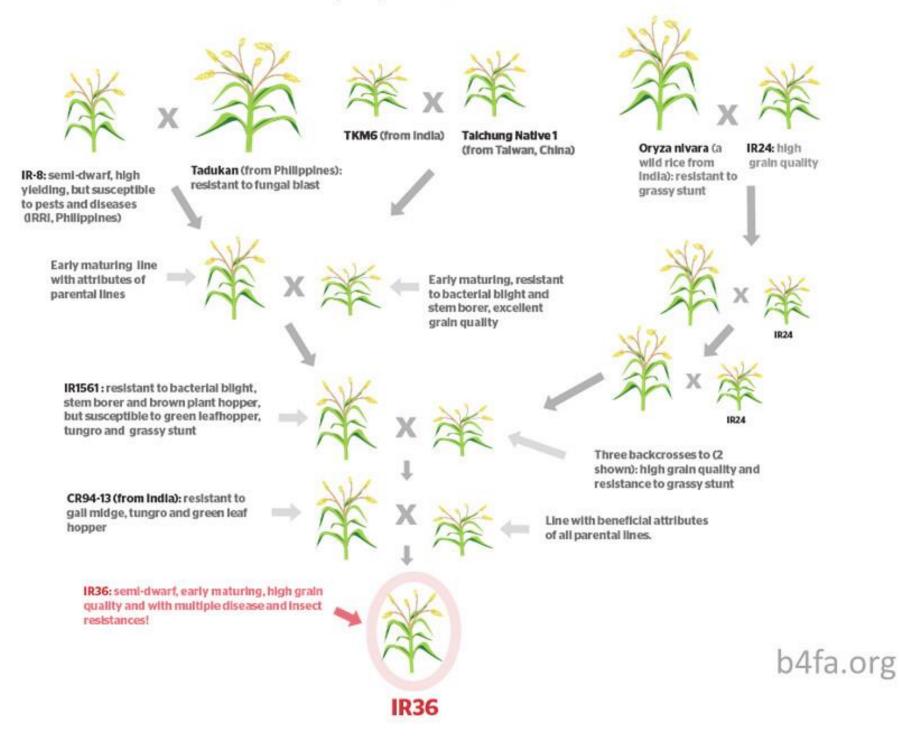
Phone: +263 71 323 2033; Email: <u>kamutandocn@gmail.com/</u>or <u>ckamutando@agric.uz.ac.zw</u> X: @CNKamutando

THE WORLD BANK

INTRODUCTION

#Crop production form the backborne of most economies in Africa, but productivity is constrained by several biotic and abiotic factors (plants not fit under these stress conditions):

#How can farmers respond to this challenge?



- In developing countries, crop production is mostly done by subsistent farmers, who are predominantly resource-poor.
- Cannot make use of these technologies, a phenomenon that coz most of the families to be food insecure, and subsequently leading them into poverty.
- Besides, use of inorganic fertilizers and pesticides is known to negatively impact on ecosystem functions and biodiversity, hence sustainable methods that are accessible to farmers need to be developed.

#How to move towards sustainability in crop production

IR36- the plant breeding challenge: to produce a high yielding , high grain quality rice variety with multiple resistances to pests, diseases and environmental stresses

#Plant breeding is a time-consuming and resource-demanding process

Journal of Agricultural Science; Vol. 10, No. 3; 201 ISSN 1916-9752 E-ISSN 1916-976 Published by Canadian Center of Science and Education

Combining Ability for Grain Yield Performance among CIMMYT Germplasm Adapted to the Mid-Altitude Conditions

Casper Nyaradzai Kamutando^{1,2}, Cosmos Magorokosho² & Shorai Dari¹

Journal of Agricultural Science; Vol. 16, No. 8; 2024 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education

Potential of Tropically-Adapted Exotic Acid Tolerance White Maize Donor Lines in Sub-tropical Breeding Programmes for Low pH Adaptation

Dibanzilua Nginamau^{1,2,3}, Casper Nyaradzai Kamutando⁴, Cosmos Magorokosho⁵, João Constâncio Saraiva⁶, Angeline van Biljon³ & Maryke Labuschagne³

Vol. 8(29), pp. 4058-4066, 1 August, 2013 DOI: 10.5897/AJAR2013.7241 ISSN 1991-637X @2013 Academic Journals http://www.academicjournals.org/AJAR African Journal of Agricultural Research

Full Length Research Paper

Exploiting genotype x environment interaction in maize breeding in Zimbabwe

Casper Nyaradzai Kamutando^{1,2}, Dean Muungani², Doreen Rudo Masvodza³ and Edmore Gasura¹

Article

Genetic Gains of Grain Yield among the Maize Cultivars Released over a Century from the National Breeding Program of Zimbabwe

Purity Mazibuko ^{1,2,*}, Charles Mutengwa ¹, Cosmos Magorokosho ³, Dumisani Kutywayo ² and Casper Nyaradzai Kamutando ⁴

Article

Genetic Potential of New Maize Inbred Lines in Single-Cross Hybrid Combinations under Low-Nitrogen Stress and Optimal Conditions

Fortunate Makore ¹, Cosmos Magorokosho ², Shorai Dari ¹, Edmore Gasura ¹, Upenyu Mazarura ¹ and Casper Nyaradzai Kamutando ^{1,*}

Euphytica (2024) 220:101 https://doi.org/10.1007/s10681-024-03367-6

RESEARCH

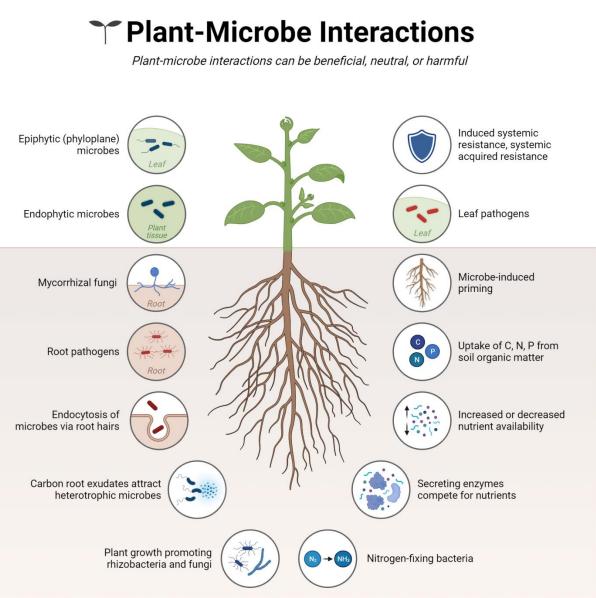
Low pH adaptation of tropical exotic acid tolerance yellow maize donor lines in sub-tropical breeding programs

Dibanzilua Nginamau · Casper Nyaradzai Kamutando · Cosmos Magorokosho · João Constâncio Saraiva · Angeline van Biljon · Maryke Labuschagne[®]

JOURNAL OF CROP IMPROVEMENT https://doi.org/10.1080/15427528.2021.1974635

Participatory variety selection and stability of agronomic performance of advanced sorghum lines in Zimbabwe

Alec Magaisa^a, Pepukai Manjeru^b, Casper Nyaradzai Kamutando^c, and Martin Philani Moyo ⁽)^a

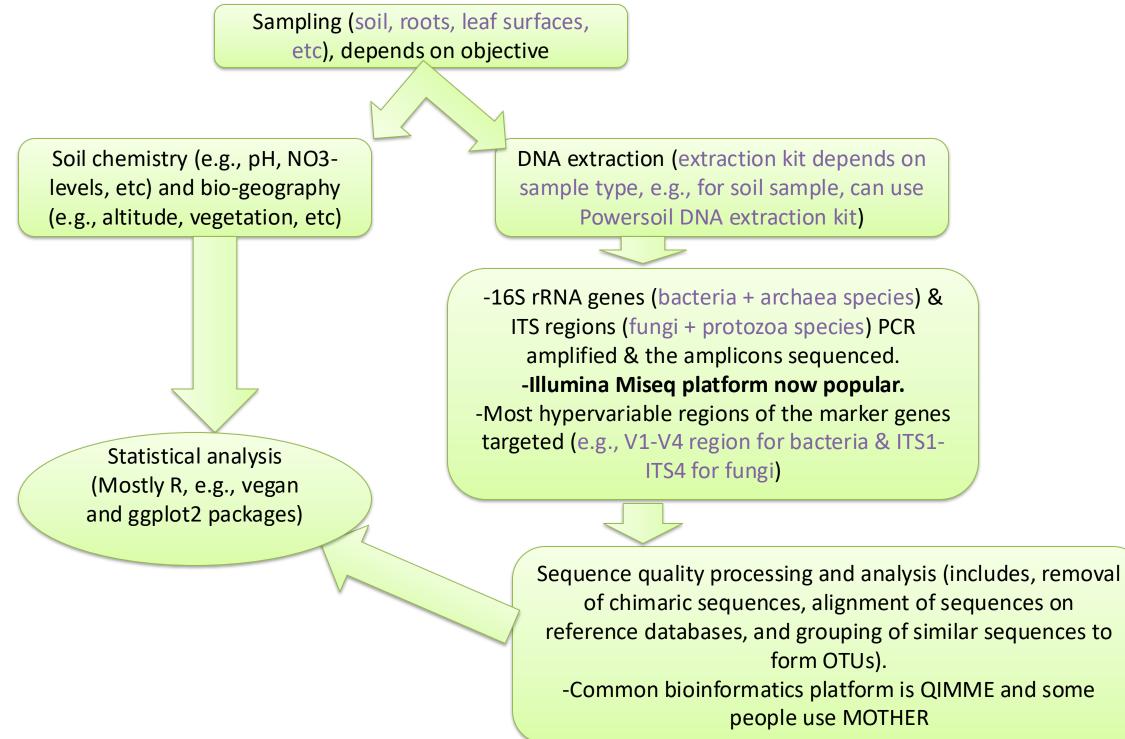


Check for updates

#Any success stories to date?

- Significant progress has been made to date, resulting in commercialization of several crop genotypes adapted to biotic and abiotic stress conditions, as well as harbouring several food and feed quality traits.
- However, under extreme stress conditions, especially in small-holder farming systems, crop productivity has remained averagely low, thereby challenging crop breeders to re-think on their breeding strategies, so that they can enhance crop productivity under the current and the predicted climate change scenarios.
- Microorganisms are postulated to play key roles in stress adaptation (i.e., plant fitness), but their potential contributions, as well as the mechanisms underlying plantmicrobe interactions under biotic & abiotic stress conditions are still poorly understood.

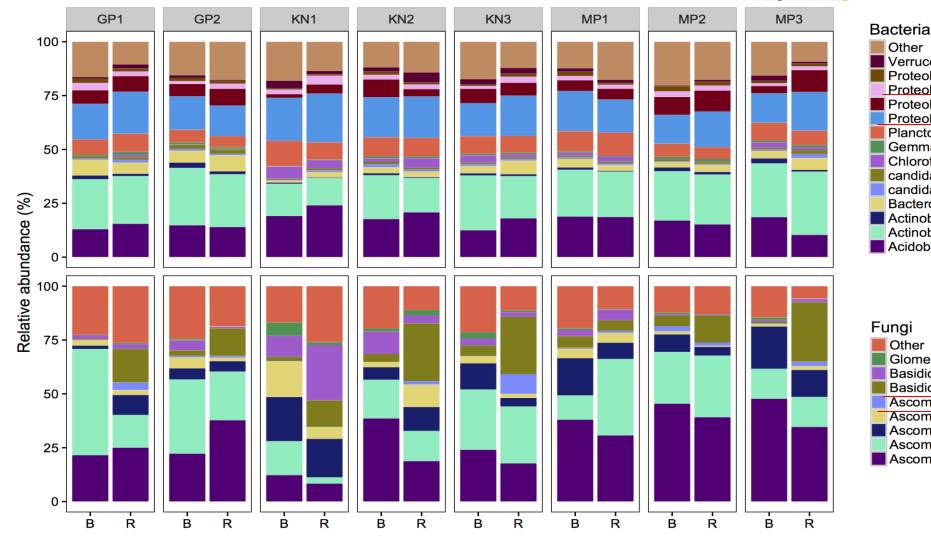
#Which questions can be answered using metagenomics approaches??


1. Who is there (taxonomical identity)?

2. What is she/he doing (functional roles, e.g., plant growth promotion, pathogenicity or nutrient cycling)?

#What then can we do to get the answers???

<u>1. Who is there (taxonomical identity): The strategy?</u>



SCIENTIFIC REPORTS

#A case study

OPEN Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata

Casper N. Kamutando¹, Surendra Vikram¹, Gilbert Kamgan-Nkuekam¹, Thulani P. Makhalanyane¹, Michelle Greve², Johannes J. Le Roux³, David M. Richardson³, Don Cowan¹ & Angel Valverde¹

Received: 10 April 2017 Accepted: 20 June 2017 Published online: 26 July 2017

Verrucomicrobia|Spartobacteria Proteobacteria Deltaproteobacteria Proteobacteria|Gammaproteobacteria Proteobacteria|Betaproteobacteria Proteobacteria Alphaproteobacteria Planctomycetes Planctomycetia Gemmatimonadetes Gemmatimonadetes Chloroflexi Ktedonobacteria candidate division WPS.2|unclassified candidate_division_WPS.1|unclassified Bacteroidetes|Sphingobacteriia Actinobacteria unclassified Actinobacteria Actinobacteria Acidobacteria Acidobacteria

Glomeromycota|Glomeromycetes Basidiomycota|Tremellomycetes Basidiomycota Agaricomycetes Ascomycota Pezizomycetes Ascomycota Leotiomycetes Ascomycota|Eurotiomycetes Ascomycota Dothideomycetes Ascomycota|Sordariomycetes

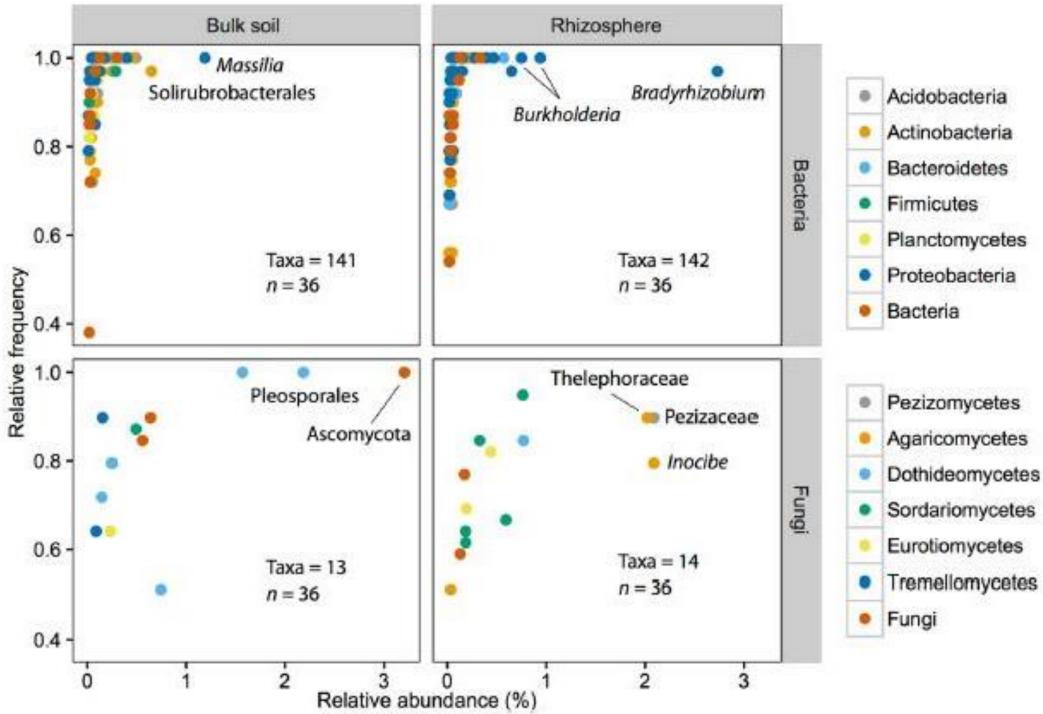
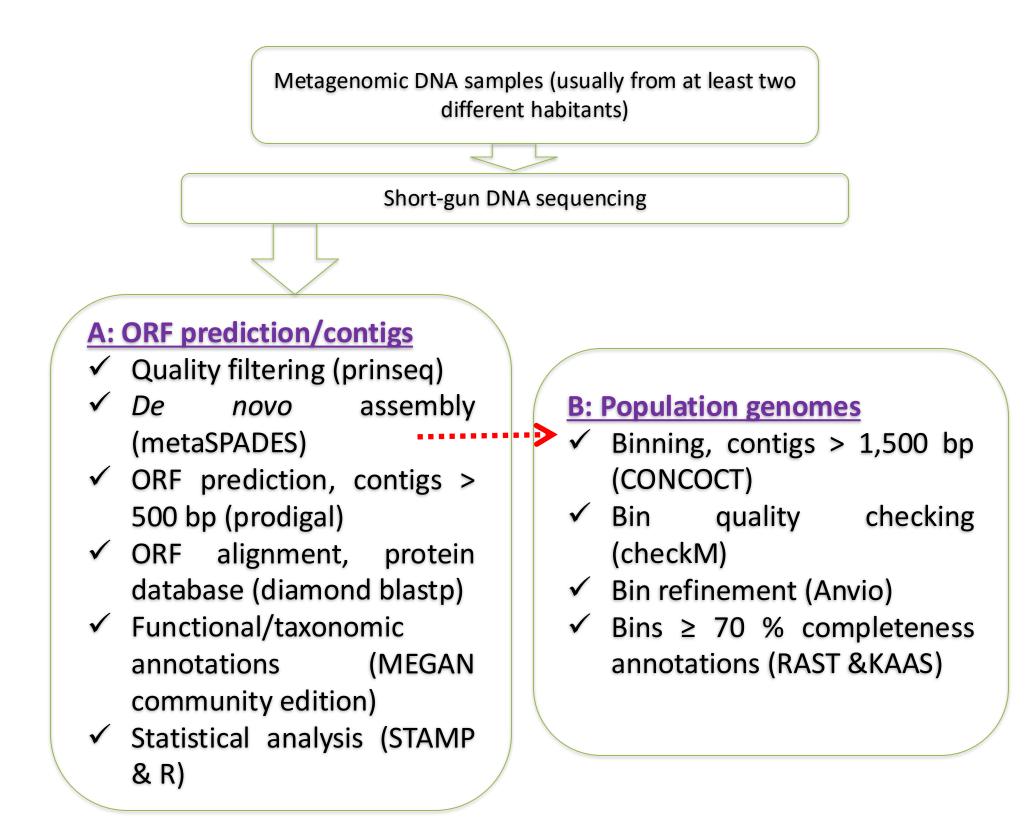
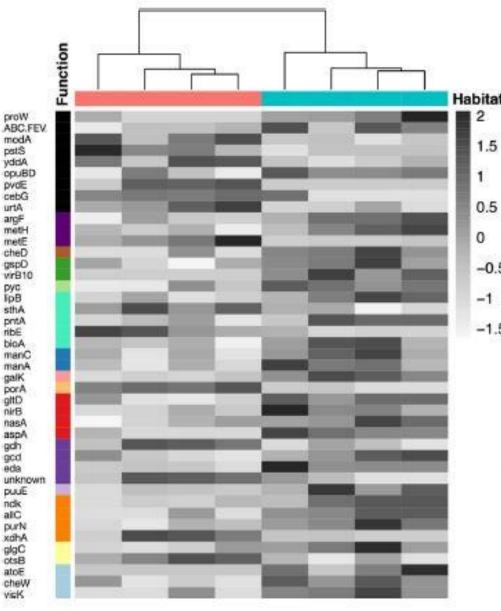



Figure 5. Relative frequency versus relative abundance of biomarker taxa, coloured according to phylum, for bulk and rhizosphere soils (logarithmic LDA score \geq 2, P < 0.05). The number of biomarker taxa (OTUs) and the number of samples (n) are indicated in each plot.

2. What is she/he doing (functional roles, e.g., plant growth promotion,

pathogenecity or nutrient cycling)?: The strategy?

#A case study

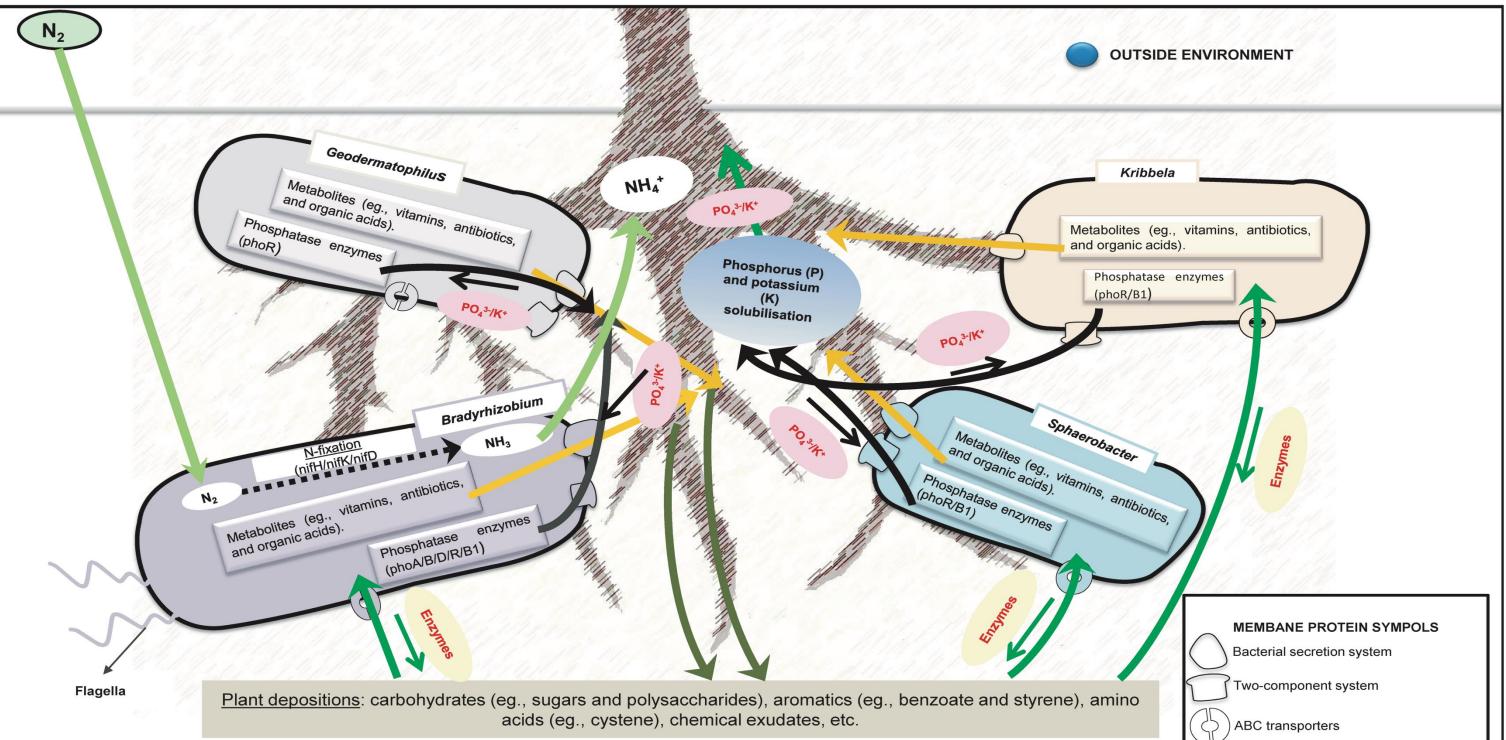

SOIL MICROBIOLOGY

The Functional Potential of the Rhizospheric Microbiome of an Invasive Tree Species, Acacia dealbata

Casper N. Kamutando¹ · Surendra Vikram¹ · Gilbert Kamgan-Nkuekam¹ · Thulani P. Makhalanyane¹ · Michelle Greve² · Johannes J. Le Roux³ · David M. Richardson³ · Don A. Cowan¹ · Angel Valverde^{1,4}

Received: 24 March 2018 / Accepted: 28 May 2018 / Published online: 9 June 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Fig. 2 Heat map of differentially abundant plant growth-beneficial functions, as revealed by STAMP statistical analysis. Genes associated with a similar function are represented by one colour; for example black denotes genes associated with ABC transporters. Each row was scaled so that the mean of each gene across samples was calculated and coloured by the corresponding z-score of each cell. Clustering of the samples was done using the UPGMA method with correlation distances. Individual genes associated with a specific function are shown on the left side of the figure


at	
ł	labitat
	Bulk soil
	Rhizosphere soil
	unction
1	ABC transporters
	Aminoacid metabolism
5	Bacterial chemotaxis
.5	Bacterial secretion system
41	Citrate cycle
.5	Cofactors and vitamins metabolism
	Fructose and mannose metabolism
- 1	Galactose metabolism
	Glycolysis/Gluconeogenesis
	Nitrogen metabolism
	Pentosephosphate pathway
	Propanoate metabolism
	Purine metabolism
	Starch and sucrose metabolism
	Two-component system

Genome reconstruction

Composite genomes (≥70% completeness) characteristics

Parameters	Bin12.2	Bin15.1	B17.1	Bin20.1	Bin21
Closest taxonomic neighbour	Koribacter	Bradyrhizobium	Geodermatophilus	Kribbela	Sphaerobacter
Sequence size (bp)	4,912,472	7,476,157	3,911,194	6,607,702	2,363,288
Shortest contig size	1501	1530	2523	2203	1662
Median sequence size	4644	7822	14308	19673	4680
Mean sequence size	5918.6	9785.5	17778.2	26751.8	5908.2
Longest contig size	30361	49996	84287	122199	26027
No. of contigs with protein-encoding genes (PEGs)	830	764	220	247	400
No. of subsystems	299	476	345	390	229
No. of coding sequences	4417	7052	3796	6324	2442
No. of RNAs	57	47	49	33	32
GC content (%)	53.7	63.9	68.5	69.5	66.3
N50 value	5926	8817	21074	40710	4887
L50 value	274	266	62	51	154
Genome completeness (%)	80.17	89.56	83.64	85.11	73.49
	Sequence co	verage values (no.	of reads mapped bac	k to the con	nposite genomes
34R (Rhizosphere)	4	346699	48	906	0
43R (Rhizosphere)	10	3342	114	117	94458
21R (Rhizosphere)	15	21915	334833	1043984	8
51R (Rhizosphere)	17	12035	57	1569	107
Rhizosphere total	46	383991	335052	1046576	94573
1C4 (Bulk soil)	51	2989	82	638	6
2C3 (Bulk soil)	214753	1013	166	582	21
8C4 (Bulk soil)	43	3006	146	1081	49
4C3 (Bulk soil)	2.7	4256	5517	1334	82
Bulk soil total	214874	11264	5911	3635	158

Putative PGP roles of bacteria residing in the rhizosphere of Acacia dealbata plants in South Africa.

CONCLUSIONS

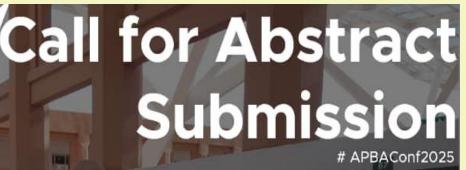
- Although a lot of progress has been made in development of crop genotypes adapted to some biotic and abiotic yield constraining factors, farmers, especially those in developing countries are still experiencing yield loses.
- Frequency of occurrence and intensity of climate change-induced abiotic stresses, especially drought and heat stress, is expected to increase, thereby warranting plant breeders to modify their breeding objectives and strategies so that crops that can cope with the present and future climate scenarios are developed.
- Selecting for crops with enhanced ability to recruit beneficial soil microbiota in their rhizosphere can be a possibility and maybe key in enhancing crop adaption and productivity under severe stress conditions.

Theme: Winning the Race against Food Insecurity, Malnutrition, and Climate Change through Genetic Innovation.

APBA CONFERENCE 2025 October 6 - 8, 2025 Pre-Conference, October 4 - 5, 2025

End-Thank you for listening!

2 - 4 April 2025 | Manthabiseng Convention Centre



Elephant Hills Resort, Victoria Falls, Zimbabwe Deadline: JULY 18, 2025

> Scan the **GR Code** to Submit your Abstract

Abstract Submission Link https://shorturl.at/JFCuf

